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THE MONTE CARLO COMPLEXITY 
OF FREDHOLM INTEGRAL EQUATIONS 

STEFAN HEINRICH AND PETER MATHE 

ABSTRACT. A complexity study of Monte Carlo methods for Fredholm integral 
equations is carried out. We analyze the problem of computing a functional 
,u(y), where y is the solution of a Fredholm integral equation 

Y(S) j k(s, t)y(t)dt+ f(s), s E Im, 
Im 

on the m-dimensional unit cube Im , where the kernel k and right-hand side 
f are given r times differentiable functions. We permit stochastic numerical 
methods which can make use of function evaluations of k and f only. 

All Monte Carlo methods known to the authors for solving the above prob- 
lem are of the order n -/2 , while the optimal deterministic methods yield rate 
n-rl(2m), thus taking into account the given smoothness of the data. Here, n 
denotes the (average) number of function evaluations performed. The optimal 
algorithm we present combines deterministic and stochastic methods in an op- 
timal way. It can be seen that both rates-the standard Monte Carlo rate for 
general continuous data and the deterministic rate for r-smooth data-multiply. 
This provides the smallest error that stochastic methods of given computational 
cost can achieve. 

1. INTRODUCTION 

The paper is concerned with the efficiency of Monte Carlo methods for the 
approximate solution of integral equations. We consider Fredholm integral 
equations of the second kind on the m-dimensional unit cube, i.e., 

(1) ~~y(S) =Xk(s, t)y(t) dt + f (s), s E Im, 
Im 

where Im = [0, 1 ]m . Here, k and f are given continuous functions on Im x Im 
and Im, respectively. 

Monte Carlo methods are usually applied to find functionals of solutions. To 
this end, fix a functional ,u E C(Im)' which is a Radon measure on Im. Let 
us denote the duality between C(Im) and C(Im)' by ( , ). The problem we 
study can now be formulated as follows: Given k and f as above, compute 
(y, ,u), where y is the (unique) solution of (1). Of special interest is the case 
,u = so,5 that is, we seek the value of y at s0, so E Im fixed. Other cases of 
interest are ,u being the integral, weighted integral, etc. 
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We analyze the global behavior of Monte Carlo methods on classes of smooth 
data, more precisely, on sets of r times continuously differentiable kernels and 
right-hand sides. We determine the smallest possible error for stochastic meth- 
ods of given computational cost. To obtain lower bounds, one has to formalize 
the notion of a Monte Carlo algorithm, which is done in the framework of 
information-based complexity theory [20]. The upper bounds are established 
by providing and analyzing a concrete algorithm. 

The efficiency of Monte Carlo methods for integration and function approx- 
imation was studied in [3, 15, 16, 20]. Optimality and complexity of determin- 
istic methods for Fredholm equations, considered over classes of kernels and 
right-hand sides, were analyzed in [6, 17, 18, 19, 11, 12]. There is also a vast 
literature on various stochastic methods for Fredholm integral equations (see 
[7, 9] and references therein). However, the rigorous mathematical investiga- 
tion of the efficiency and complexity aspect of Monte Carlo methods is new, in 
particular the determination of optimal rates. 

Our results, combined with those of Emelyanov and Ilin [6], also allow a cer- 
tain comparison of deterministic and stochastic methods (which can, of course, 
only be a rough, heuristic one, owing to the different error criteria used). In 
this light the algorithm providing the best rate has some new features. The 
usual Monte Carlo methods yield the typical rate of M-1/2 for M trials and 
do not react to any smoothness of the data (see [7]). Deterministic methods, 
in turn, do so, but yield only a dimension-dependent best rate of M-rl(2m) 
(M the number of arithmetic operations performed; see [6]). Our algorithm 
keeps both advantages, that is, respects smoothness and adds the Monte Carlo 
contribution, in this way giving the optimal rate of M-rl(2m)-l/2. This is 
achieved by suitably combining standard deterministic and stochastic methods. 
Thus, the algorithm we present might also be of computational interest. 

The paper is organized as follows. In ?2 we provide the necessary notions 
and formulate the main results. Proofs of the lower and upper bounds are 
given in ??3 and 4, respectively. Section 5 contains some discussion of models of 
computation, the computational cost of the concrete algorithm, and the relation 
to deterministic methods. Basic references for Monte Carlo methods are [7, 9], 
and for information-based complexity, [20]. 

2. THE MAIN RESULT 

First we introduce the classes of right-hand sides and kernels we shall con- 
sider. Let Cr(Im) and cr(Im x Im) be the spaces of r times continuously 
differentiable functions (that means-to avoid ambiguity-the restrictions of 
Cr-functions defined on some neighborhood of the respective domains). 

Let 11 tlo denote the maximum norm on C(Im) and let 11 llr be the norm on 
Cr(Im) defined by 

llf llr = max IlDaf Hlo, 
jal<r 

where a = (ae, ..., aem) is a multi-index and Da stands for the respective 
partial derivative. The corresponding notation applies, of course, to 

cr(im x im) = cv2m) 



THE MONTE CARLO COMPLEXITY OF FREDHOLM INTEGRAL EQUATIONS 259 

Given constants a, B > 0, 0 < y < 1, and r E N, we denote 

g(fr(a y) = {k E Cr(Im x I,), llkilo < y, and llkllr < a} 

and 
_r(g) = {f E Cr(Im), Ilf llr < fl}. 

The symbol Id always denotes the identity operating in C(Im). Let Tk: C(Im) 
-- C(Im) denote the integral operator defined for k E C(Im x Im) and f E 
C(Im) by 

(Tkf)(S) = i k(s, t)f(t)dt. 
Im 

The requirement llkllo < y implies IITkIIc(Im),c(Im) < y. From now on we 
suppose r, a, /B, y to be fixed. Denote 

X = r A = r(,, y) X S(B 

Let finally [u E C(Im)' be fixed. Then the solution operator S,1: X -* R is the 
operator which maps the data (k, f ) to the solution (y, ,u) of our problem, 
that is, 

(2) Su(k, f) = ((Id-Tk)-<f, A). 

Note that the solution operator is nonlinear in k. 
As a framework in which to study the numerical approximation of S,1 we 

use the theory of information-based complexity of Traub, Wasilkowski, and 
Woiniakowski [20]. 

Let X,n (X, Rn) be the class of all standard information operators from X 
to Rn, that is, the class of mappings of the form 

N = ( I(s , t1 ) (5(S2, t2) X * 5(si, t) X 5s+, X * * * X5sn) ) 

i.e., 

N(k,5 f ) =(k(sl, ti), ... (sl, ti), f (Si+l i X A(SO)) 

where O<l<n and si,tj EIm (i= 1,...,n, j= 1,...,1). Weadopt 
the convention that A/st?(X, RO) = {0}, 0 the zero mapping. The quantity 
N(k, f ) represents the information about the data (k, f), which we shall use 
in the computational process. 

Given N E Astn(X, Rn), we denote by DI(N, R) the class of all mappings 
(p: N(X) -* R. These mappings are called algorithms using information N. 
The number (p(N(k, f )) represents the outcome of the computational process 
performed at the respective information. 

The class Jn (X, R) is formed by the composition of some information N 
and algorithm (o: 

,'n(X, R) = {( oN, ( ED(N, R), N E1stn(X, Rn)}. 

The elements of A"n (X, R) are called (deterministic) methods-they symbolize 
the full computational process. Finally, 

Xe(X,5 R) := U en(X, R) 
nEN 

constitutes the class of all methods using standard information of some finite 
cardinality. The elements of Xt(X, R) are denoted by u. 
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Our definition of a random method follows [20, p. 417] (compare also [1 5]). 
Define the following a-algebra: 

7(X, R) := a({u E X(X, R), u(k, f ) E A}, 
(k, f ) E X and A c R a Borel set). 

It follows that for every (k, f ) E X the mapping u -* u(k, f ) is a real random 
variable on [X'(X, R), 7(X, R)]. 

Quite generally, we shall call any probability P on [A'(X, R), Y(X, R)] 
a Monte Carlo method. This way we have a large abstract class, containing, 
in particular, the standard Monte Carlo methods. Furthermore, the cardinality 
function card: X(X, R) -* N is defined by 

card(u) = min{n E N, u E An(X, R)}. 

This function is possibly not measurable. Therefore, we define the MC-cardinal- 
ity of a Monte Carlo method P via an upper integral 

f* 

MC- card(P) = / card(u) dP(u) 
X(X, R) 

inf { A z(u) dP(u), z(u) > card(u) 
t (X, R) 

for all u and z is -Y(X, R)-measurable} 

This quantity plays a crucial role, since it is closely tied to the computational 
cost of the method (see ?5). By n(X, R) we denote the class of all Monte 
Carlo methods with MC-cardinality < n. 

The error of a Monte Carlo method P for S,1 at (k, f ) E X is defined by 

emc(S,u, (k, f ), P) = ISu(k, f )-u(k, f )I dP(u), 
(X,R) 

and the error over the class X by 

emc(S, X, P) = sup emc(Su, (k, f), P). 
(k, f )EX 

The quantity we are interested in is the smallest error a Monte Carlo method 
of given cardinality can achieve: 

emc(S,, X) := inf{emc(Su, X, P), P E6An(X, R)}. 

The main result of the paper is the following. 

Theorem 1. For all r E N, a, ,B > 0, and 0 < y < 1 there are constants 
0 < c < C < oo such that we have for X = X, A 

(3) cn-r/(2m>12 < sup emc(S,4, X) < Cnr/(2m 1/2, n E N. 
11#11< 1 

In particular, we get a general lower bound for all Monte Carlo methods 
using (on the average) not more than n values of the kernel and right-hand 
side. Since our estimate is sharp up to a constant factor, it also says that there 
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is an abstract Monte Carlo method achieving this order of error. One may ask 
whether there are concrete, practicable algorithms with this property. This is 
indeed the case. Our proof of the upper bound consists in the description and 
analysis of such a Monte Carlo method. Theorem 1 also provides the basis 
of the complexity analysis. Let MC-comp(S,1, X, e) denote the complexity 
of solving the problem S,1 on X with error at most c (see ?5 for a detailed 
discussion). Then we have 

Corollary 1. For all r E N, a, A > 0, and 0 < y < 1 there are constants 
O < c < C < oc and co > 0 such that we have for X = Xr&AY 

/ \2m/(r+m) 
c ( m < sup MC-comp(S,, X, e) 

(4) \ 11?11<1 

I 2m/(r+m) 
<C _)< , 6 0< 80 

For a comparison, the corresponding deterministic counterpart of Theorem 
1 is of interest, which follows from the results of Emelyanov and Ilin [6] (see 
?5 for more details). The deterministic rate is n-r/(2m) (and the corresponding 
complexity is (e)2m/r) . So the optimal Monte Carlo rate is indeed the standard 
Monte Carlo rate n - 1/2, improved by the rate of the optimal deterministic 
approximation, showing how to combine randomization and approximation in 
the most efficient way. 

3. THE LOWER BOUND 

The proof of the lower bound in (3) of Theorem 1 is based on a technique 
developed by Bakhvalov [3]. 

Let v be any discrete probability measure on X. Denote by 

en(S ,5 X, v) = inf{J 1S(k, f)-u(k, f)Idv(k, f) u E An(X, R)} 

the error usually called the average-case error with respect to the measure v. 
Since v is discrete, no measurability problems occur. 

Lemma 1. For each n E N we have 

eMC(S# , X) > IenS xv 

Proof (compare [ 15, Lemma 2(ii)]). Let P be any Monte Carlo method with 
MC-cardinality MC-card(P) < n . Given 0 < c < 1, let z: A'(X, R) -* R be 
a measurable function such that z(u) > card(u), u E A'(X, R), and 

(5) / z(u)dP(u) < (1 +e)n. 
X(X, R) 

Denote Z2n = {u E A'(X, R), z(u) < 2n}. Then Z2n C 2n (X, R) and 
Z2n is measurable. Using Chebyshev's inequality, we can conclude from (5) 
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that p(Z2n) > (1 - 6)/2. Moreover, using Fubini's theorem, we obtain 

sup I IS(k, f) - u(k, f )I dP(u) 
(k, f)EX X(X, R) 

> sup | ISu(k, f )-u(k, f )I dP(u) 
(k, f )EX Z2n 

> ISu (k, f) - u(k, f )I dP(u) dv(k, f) 
X 2n 

= L| J ISu(k, f)u(k, f)Idv(k, f)dP(u) 
z2n 

>p(Z2n).inf{f Su,(k,f)-u(k,f)Idv(k,f), ue Z2n} 

> ((1 - 0)/2) inf{ JS,u(k f )-u(k, f )ldv(k, f), u E r2n (X R)} 

With c -t 0 we arrive at 

e,mc(S, tX) > 2e2n(S#, X, V). 

Thus, we have reduced the problem of Monte Carlo methods to an average- 
case problem with deterministic methods of fixed cardinality. Moreover, to 
prove lower bounds, we can specify the functional ,u to be a = 6,,0 for some 
fixed So E Im . 

In fact we shall prove the lower bound for all such j50 . We can assume with- 
out loss of generality that 1/2 < so, < 1, where so = (so,, ... , SOm) (otherwise 
we modify the subsequent constructions in an obvious way). The following 
lemma makes it easier to handle the error. Let A denote the integration func- 
tional on C(Im x Im), that is, 

(k, j) j k(s, t) ds dt, k E C(Im x Im). 

Let 0 = 2 min(a, y). Then 0, as a constant function, belongs to 5r(a, y), 

and Tof = f fIm ff(t) dt is a constant function for every function f . Put 

I, [?, II x I ,1 J, [I , l] x IM- 

and define 

? = {k E Cr(Im x Im), lIkIlr < 0, supp(k) c I1 x J}. 

Observe that for k E R we have 0 + k E Xr(a, y), Tk2 = 0, and k(so, t) = 0 
for all t E Im . 

Lemma 2. Let /, y, and a = 6s0 be fixed as above. For all k1, k2 e g we 
have 

ISo,(O + ki, l) - So,( + k2, 8 )1 ' 801(k - k2, A )1 

Proof. Let k E R . Since Tk2 = 0 and ToTkJ = fl6(k, A), we easily verify the 
equation 

(Id-TO+k)(Id+Tk)f/ = (Id-To(Id+Tk))fl 
= f(1 - 0 - 0(k, A)). 
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Since 1 - 0 - 0(k, A) cannot vanish, we see that 

(Id-TO+k)<-l = 1 6(k ))(Id+Tk)f3. 

Exploiting, moreover, k(so, t) = 0, t E Im, we see that 

So(6O+ k, f) = 1 

Given kernels k1, k2 E , we conclude 

JSo,( + ki, ,B) - SSa(f + k2, fl)l 

fl61(ki - k2 , A)I llk k ).E 
(1 - 6 - 0(k1, A))(1 - 6 - 0(k2, A)) >I36I(ki-k2,)) *I 

Lemma 3. There is a constant C1 > 0 such that for all n, q E N with q > 2n 
and all choices of kernels k1, ... , kq E R with mutually disjoint supports there 
is a discrete measure v on X such that 

e2n(So, X, v) > C(q - 2n)1/2 min l(ki, A)I. 
1<i<q 

Proof. Let (ei)q1 be a sequence of independent {+ 1, -1 }-valued random vari- 
ables on some probability space [Q, p] satisfying 

P-ei = - 1 } = pei = + 1} = for all i 

(i.e., they are Bernoulli). Define a mapping ,v: Q -* X by 

V/0 = ( + g i (co)ki , 8) 

That this is indeed a mapping into X follows from the definition of 0 and 
the assumptions on the ki. Let v be the image measure p y-V1 induced on 
X by ,v. Now we take any u E '2n (X, R) and represent it as u = f * N, 

N 4e A2 n (X, 2n), f D(N, R) , 

N = ('5(s1,t1) , 5i,t(s,t) ( 5s+l I .. I JS2n) 

Let A c { 1, . .. , q} be the set of those i for which the support of ki contains 
at least one of the pairs (s,, tl), ... , (si, t1). By assumption, the supports of 
the ki are disjoint, which implies card(A) < 2n. Let B = {1, ..., q}\A. 
Then card(B) > q - 2n and 

ki (sj , tj) = O (i E B, j = I,.. 1). 

Let us denote 

gl (co) =0 + :e i (co)ki , (a) EQ) 
iEA 

g2(CO) =Z i(c)ki (w E Q) 
iEB 

Thus, we have yV(co) = (gl (co) + g2(co) , 3) for all w E Q . Observe that gl + g2 

and gl - g2 have the same distribution and that, by construction, 

N(gi (wi) + g2(wi), f) = N(g1 (w) - g2(),fl), c E Q. 
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Now we get 

jISa(k, f) - u(k, f)l dv(k, f) 

= j tSa(gi (co) + g2(w), ,6) - (o(N(g, (co) + g2(w), fl))I dp(c) 

= 2 Z jn ISO(g, (co) + rg2(w), 6) - Q(N(g, (c) + rg2(w), 6))I dp(c) 
T=? 1 

> j ISo, (g, (c) + g2&(), 3) - So (g (c) - g2&(), ) dp(w) 

(6) > 80 / j(g2(co), A)I dp(co) = 60 j Z | i(c)(ki ,{) dp(c) 
iEB 

/ \ 1/2 

(7) > Ci ( (ki iA)2) > C1(q -2n)1/2 min I(ki, A)I, 
iEB - -< 

where we used Lemma 2 to derive (6) and Khintchine's inequality with constant 
K2 (see [13, Chapter IV, ?5]) to derive (7) with C1 = ,83K2. El 

It remains to produce suitable sets of ki's. Let (0 E C??(R), supp(Q) c 
(0, 1),and flo?O 0. Let teN anddefine 

egj {(l, ..,im), 0 < il < 1- 1, 0 < ip < 21 - 1, p = 2, ..,ml 

and 

={, (jl , jm), 1 < j, <5 21 -1, 0 < jp < 21 -1, p = 2,..., } 

For (i, j) E J1 x, i = (ij , *. * , im) , i = (jl, * , jm) , and (s, t) E Im x Im , 
S = (Si, * Sm) X t = (tl,..., tm) , set 

m m 

k(j)(s, t) =7 Q (21sp - ip) 1 ( (21tp - jp). 
p=1 p=l 

It is easily seen that there are constants C2, C3 > 0 (independent of 1) such 
thatfor (i,j) Ei xX wehave 

(8) Kk(j, ) , I > C21-2m 

and 

(9) lIk(i,j)llr 
< C31r. 

Finally, let 

(10) (i,j) - Ilk'i,j) 

Since 

supp(k(lJ)) C fi ip + 1) x II ( IP + 1 ) 
p=1 p=1 
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it follows that k(lj) E M and that they are of mutually disjoint support. More- 
over, 

t(kl A)1>C2 1-r-2m (i 
ll 

j)E4XX 
-0 P C3 

Note also that 
card(-" x = 4m112m 

We can accomplish the proof of the lower bound as follows. For each n E N 
let ln be the unique natural number satisfying 

4m- 112m > 4n > 4 -1(1 - 1)2m. 

Then In < (2(2-m)/m + 1)nl/(2m). Moreover, setting qn - 4m-112m, we get 

qn - 2n > qn/2. Now we apply Lemma 3 to q = qn and to the set kln 

(i, i) E YJn X <An }I. Combined with Lemma 1 this yields 

enC(Sa, X) > I (qn)l/2 C21-r-2m 
nmc(so 5 ) ;2 2 C3in 

- 2m5/2CC C2C1 1/-r-m > C4n-r/(2m)-1/2 

which finishes the proof of the lower bound. 

4. THE UPPER BOUND-VARIANCE REDUCTION FOR LIPsCHITZ ESTIMATORS 

Stochastic methods to solve Fredholm equations of the second kind are well 
known and used frequently (see [7, 9, 8]). All known methods yield the typical 
Monte Carlo rate M-1/2 (for M trials), but do not respect the smoothness of 
the kernel and the right-hand side, respectively. 

For the integration problem, among various techniques for variance reduc- 
tion, the method of "separation of the main part" can be used to include smooth- 
ness properties of the integrand (see [7, 8]). This section provides an application 
of these ideas to Fredholm equations of the second kind, more generally, to nu- 
merical problems which allow estimators satisfying some Lipschitz condition. 

Precisely, let us introduce the following notion. 

Definition 1. Let (Y, d) be a metric space and 4 = ( yx)xEY be a family of (real- 
valued) square integrable random variables on a probability space [Q, Y, P]. 

The family 4 is said to be Lipschitz (in mean) if there is a constant C > 0 
such that 

(Elx _ - y12)1/2 < Cd(x, y). 

(The smallest constant C satisfying the above estimate is called the Lipschitz 
constant.) 

Conditions of this type are well known in the theory of stochastic processes 
and are related to the path continuity (see [14, ?35.3]). The following lemma is 
an immediate consequence of the definition and contains the main idea of the 
variance-reduction technique. 

Lemma 4. Let (Y, d) be a metric space and 4 = (4x)xEy be Lipschitz with 
constant C. Then we have 

1. T(x) := E4x, x E Y, is Lipschitz with constant C on Y. 
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2. For M E N and independent copies Xj of X, 1 < j < M, define 

M 

cm(x): m E ~Xj xeY. 
j=1 

Then we have 

(11) (EIT(x)-[T(y)+Cm(x)_CM(y)]12)112< 
C 

d(x ) 

Proof. Since Xx is square integrable, the expectation E4x exists. Moreover, we 
have 

I T(x) - T(y) I = IE4x - Ey I < Ejx - Xy I < (Elx _- y 12)1/2 < Cd(x, y). 

To prove (11), we use standard properties of the variance of the sum of inde- 

pendent mean zero random variables T(x) - Xx 

EIT(x) - [T(y) + mM(X) -M(y)]12 
M 2 

= 2E Ei(T(x) -~xj)- (T(y) -Xyj) i M2 =1 =1~' 

M2 IEI (-Yj -X) - (T(y) - T(x)) 12 
j=1 

<? EjXx - Iy2 < Mj d2(Xx, y), x,yEY. o 

The Monte Carlo method suggested by the above lemma can be described as 
follows. Suppose we are given a Monte Carlo method P on 4'(Y, R) for a 
solution operator S. This method gives rise to a family 4 of random variables 
on [O(Y, R), (Y, R), P] defined by 

(12) Xx(u) := u(x), x E Y, u eA(Y, R). 

Further, if P is unbiased for S, that means, 

S(x) = T(x) := E Jx u(x) dP(u), x E Y, 
X(Y, R) 

then we can apply the above lemma. Given x E Y, we choose a good approx- 
imation y to x for which T(y) can be computed exactly. Knowing T(y), 
we can improve the approximation by averaging independent trials with Monte 
Carlo method P, each realization of which is applied both to x and y. This 
procedure is working whenever the family (4x)xEy of random variables defined 
by (12) is Lipschitz in mean on an appropriate space (Y, d). 

The Monte Carlo methods, applied to solve Fredholm equations of the second 
kind, are normally based on the use of absorbing Markov chains (see [7, 8, 
9]). For our purposes it can be seen that the Markov chain we shall employ 
has a very simple description. Let A E Rm\Im be any element, the so-called 
absorbing state. Let D := Im U {A } be the state space, equipped with the Borel 
a-algebra ?2. Given 0 < p < 1 and the (initial) distribution ,u on Im, we 
introduce the distribution of a random sequence (Xi)?1 with values in [D, 5] 
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as probability P on [Q, Y] with Q = DN and 7 = 2N. This is done by 
giving the transition probabilities. For n E N, x E Im, and A the Lebesgue 
measure on Im, let 

P(XI E A) = (A), 

P(X+l E AIX, = x) = p X(A), AcIm, AE? , n>l, 

and 
P(Xn+l =AlXn =x) = I-p . 

Further, 
P(Xn+? = AIXn =A) = 1, n > 1 

meaning that A is absorbing. In the notation of stochastic processes, (Xi)"1 
is a stationary Markov chain with absorbing state A and transition densities 
p(x, y) = p. The Markov chain on [D, 5] thus introduced can be completely 
described by p and the (initial) distribution It. The lifetime r of such a 
Markov chain (Xi)=1 is defined to be r((Xi)001) := min{k, Xk = A} - 1 if 
there is a k with Xk = A, and r((Xj)l=) = oc otherwise. It will be seen 
from Proposition 1 below that r is finite with probability 1. The Monte Carlo 
method will be defined using this Markov chain. 

Given rEN, E ,,, y, and X = Xr ., y as above, we introduce for technical 
reasons another space Xo. To this end, fix y with y < y < 1 and ,B with 
,B < / < oo. Put 

XO := Xo(f, y) =(k,5 f) k E C(Im x Im) with llkllo < Y 

f E C(Im) with Ilf lo < ,B}, 
equipped with the metric d((k, f), (h, g)) := Ilk - hllo + Ilf - gllo. The space 
Xo contains X as a subset, and S, can be extended to Xo in a natural way, 
since the defining equation (2) for S,, also applies to (k, f ) E Xo . We shall 
use the same notation S,, for the extended operator. 

First we introduce and analyze the standard; Monte Carlo method, based on 
this Markov chain (compare [7, 9]). This will be done for elements of XO. For 
this purpose we will specify p and the initial distribution ,u. Suppose we are 
going to approximate S,, for some ,u E C'(Im) . Since S,, is linear in [1, and 
since each ,u can be decomposed into its positive and its negative part, it is 
easy to see that it is enough to find Monte Carlo methods based on probabilities 
,u on Im . So, given a probability [go on Im, we want to approximate S,O . We 
choose the Markov chain (Xi)?1 with initial distribution [to and transition 
density p with < p < 1, fixed from now on. The distribution of this chain is 
denoted by PO. For each (k, f ) E Xo we define a random variable 4 on the 
probability space [Q, 5, PO] in the following way: 

1 l PXl) if r((XM)l=) = 1, 

(13) 4((Xj)-'1 X k f)= f(1)- (J k(Xi Xi+l) f (Xr) 

if 1 < T((X1)'??l) < 00, 

O otherwise. 
The following proposition contains all technical details needed below. 
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Proposition 1. There holds 
1. Er((Xi)?1) = Ip; 

2. E4 ((Xi)i?l k,5f )= SjO(k5ft), (k,5f)EXO; 
3. The family ((k, f))(k, f)EXo of random variables on [Q, 5, PO], defined 

by 
4(k, f ) (M) i)=1) := ((Xj)l=l, k,5f), (k, f ) E XO, 

is Lipschitz with constant 

C5 < ;( p)( max{p 2- 

Proof. The calculus needed to prove the assertions is standard and explained in 
[9, Lemma 1.1.1]. Let us recall the following relation, exploited several times 
below. For convenience, let us introduce the following function: 

X{n}(T) { 1, T((X1)OOj) = n, 
{0 elsewhere. 

If F: [DN, N]---* R is a measurable function and Fn: (Im)n -* R defined by 
Fn(X, ***,x) =XF(x, . . ,Xn, A,A, ...) is bounded, then we have 

E(F ((Xi) c=l ) *Xn z) 

(14) J . Fn(Xi., Xn)Pn-l (I1-p)dX2 . dXnJLo(dXl). 

n-times 

Using (14), we obtain 

00 00 1 
E,r((Xi)l) = Z nEXInj (r) = Znpn-(1 1-(p) 

n=1 n=1 

which proves 1. 
Further, 

00 

E4((Xi)01, k, f) = ZE(4((Xi)`i, k, f )X{n}(r)) 
n=1 

- Jf(xl)ko(dxl) 

oo0 n-1 

n= E .. rjI k(xl, xi+,) f(Xn) dXn dX290t(dxj) 

n-times 
00 

- Z(T~n-1f Io) 
n=1 

po((Id-nTk)g-f2, o) = S.o(k f (k, f) E Xo 

proving 2. 
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It remains to prove 3. First observe that ((Xi) 0, k, f ) is linear in f, so 
that we can conclude 

4((Xi)`?? , k, f ) ((Xj)X?? , h, g) 
= 4((Xi)'= , h, f - g) + 4((Xi)io1 , k, f) - 4((X1)`?1 , h, f), 

and it is sufficient to show that ((Xi) 0, k, f ) is Lipschitz with constant C5 

in the second and first arguments, separately. An application of (14) shows 

I 
0.0 

El4((Xi)01 , h, f-g)2- 1 _ (T ( _ g)2, go) 

1= 
= 1-p ((Id-Th2/p) -(f-g)2, uo) 

1 
<1 -pII(Id -Th2/p)1 IIC(Im)C(Im)IIf- gII. 

Since l1h2/pllo < y2/p, we obtain 

(ElI((Xi) i , h, f _ g)12)1/2 < p 1= ~~- (p - 2)(l - )llf lbO. 

The estimate with respect to the kernel is 

El4((Xi)c'0 , k, f) - 4((Xi)c?1 , h, f )12 
00 

= EE(I4((Xi)= I, k, f) - ((Xi)c?1 , h, f )12*X{n I 
n=1 
oo0 1n-I n-1 2 I ( pn jH k(xi,xi+,) - Hh(xi, xi+i) 

n-times 

* 
2 
2(Xn) dXn dX2 dpo(xl ) 

(15) < I _ p (P) (n-1 )21 l k k- h l2(2)n-2 
n=2 

< 0 -llf lkllo - (nh - 1)2 ( Y2) 
(1 p)22 n=2 

lIf llo lk - hIll (22/p)(1 + 2/p) 
( 1 6) ~( 1 _p)22 (I1 - y22p)3 

lif II2lIk - hIIop(p + 22) 2p/32 IIk-hIIo. 
(1 -p) (p-~2)3 - (1 - p) (p - 2)3 

The derivation of ( 1 5) uses the easily verified relation 

n2 n / n- i 

H7ai -J7Jbi <n (max (jail, lbil) max jai -bil. 
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For the value of the sum that gave (16) see [4, 5.2.25]. Hence, 

(El((Xi)l=I, k, f) - 4((X)`I, h, g) 1,21/2 

< (Ek4((X,)c??l k, f) - ((Xi)`, h, , )12)1/2 

+ (EI4((Xj)c'=l, h, 
f _ g)12)1/2 

< 
_ 

t_p_ y2 _lk - hllo + p 2 
1 f-gIl0 

(1 - - 2) max { 1, p 2 } (Ilk - hllo + Ilf - gHlo), 

which finishes the proof of assertion 3 and of the proposition. 5 

So far, we assembled the facts about the standard Monte Carlo approach. 
Next we turn to the deterministic setting before we shall combine both to ob- 
tain the final, optimal Monte Carlo method. First recall a known fact from 
approximation theory (see, e.g., [5, Chapters 2.2 and 3.1]). 

Proposition 2. There exist constants K, C6, C7 > 0, a function q: N -* N with 
q(l) < K * 1, a family ((ti1)iq '))l=1 of elements in Im, and a family of linearly 
independent continuous functions (i(,I)q1) ')<-1 c C(Im) such that 

(17) sup 11(i, I lo <??, 
i,I 

(18) max card{j: supp(e p,) n supp(p i) # 0} <cj o. 
i,I 

The mappings PI: C(Im) -* C(Im) and Ql: C(Im x Im) -- C(Im x Im), defined 
by 

q(l) 

(19) (Pif )(s) Zf(ti, I) p i (s) 
i=l1 

and 
q(I) q(I) 

(20) (QCk)(s, t) = ZZ k(tii, tj 1)p(p p I(s)(p I(t), 
i=1 j=1 

satisfyfor f E Cr(Im) and k E Cr(Im x Jm) 

(21) Ilf-Prf lo ? C6lr/mIlr 

and 
(22) Ilk - Qkljo < C7l-r/mjjk1r. 
Furthermore, (17) and (18) imply 

(23) sup IIPIIIc(jm)>c(Im) < ?? 

and 

(24) sup IIQiIIC(ImxIm)>C(ImXIm) < 00. 

The following fact is well known (see, e,g., [6; 10, Chapter 16]) and expresses 
the existence of deterministic methods of a certain approximation rate (in fact, 
the optimal rate for the worst-case setting). 
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Proposition 3. There exists a constant C8 > 0 such that for all / E N there 
is an N1 E XI 2(X, R 2) and a mapping V/1: N1(X) -* C(Im) such that with 
v1=qV1oN, and R(k,f):=(Id-Tk)->f, (k,f)EXo, 

(25) sup llvl(k, f -R(k, f ) Hlo < C81lr/m. 
(k,f)EX 

Given (k, f ) E X, and using both Proposition 2 and Proposition 3, we can 
find (h, g) E XO near (k, f ) such that the solution R(h, g) can be given 
exactly. For this purpose, we define 

(26) w1(k, f ) := (h, g) := (Qlk, (Id-TQ,k)PIvI(k, f)). 

Lemma 5. There exist Cg > 0 and lo E N such that for all / > lo the transfor- 
mation w, maps X into Xo, 

(27) sup d((k, f), wl(k, f )) <Cgl-rlm, 1 > 10, 

(k,f)EX 

and 

(28) S,u0(w1(k, f)) = (P1v1(k, f), go)'. 
Proof. Let 11 be such that for all k E fr(a, y) 

lk- hllo ? C7lr/mkllr < C71'I-rlm < -y, / > 11 

This yields IhIo ?< for / > 11. For (k, f ) E X we have 

If -(Id -Th)P,vl(k . f ) Ilo 

< II(Id-Tk)R(k, f ) - (Id -Th)R(k, f )H1o 

+ 11(Id -Th)R(k, f ) - (Id -Th)PIR(k, f)Ho 
+ 1(Id -Th)PIR(k, f -(Id -Th)Plvl (k, f )H1o 

? Clol rlm. 

Here we made use of (21), (22), (23), and (24), together with the fact that 
(Id-Tk)-1 is uniformly bounded on Cr(Im) for k E Xr(a, y). Now we 
choose 12 in such a way that for / > 12 

Ilf - (Id-Th)PIvI(k, f)llo < / /3 

and put lo = max{/1, 12}. It follows that for / > lo, the transformation w, 
maps X into XO and (27) holds. The representation (28) is an immediate 
consequence of the definitions. O 

Let us put for (k, f ) E Xo 

(29) ii,(k 5 f ) = Sjuo (w,(k 5f))=(Pi vi(k 5 f ), 5 o) . 

We are now in a position to describe the Monte Carlo method providing the 
upper estimate in (3). For each / > 1o and M E N we shall define a Monte 
Carlo method PI, M on [A(X, R), Y(X, R)] as the distribution of a random 
variable UW,M on 

[DN)M, (eN)M Mp 
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with values X(X, R). So let 

(OM = (a)I, co. (9)=(X)?1,*- xim)? E (D N)M 

be such that 1 < r(wi) < 00 for j = 1, ..., M (which holds for almost all 
(OM). Definefor (k, f)eX 

M 

(30) uwM(k, f ) = i(k , f) + (4(io k, f) - 4(wj, w1(k, f))). 
j=1 

The components of UW,M are defined by (29), Proposition 3, (26), and (13). A 
look at these relations shows that UW,M "uses" the following information: 

NWM = (VI, Nl, N)I,... , NWM). 

Here, VI E q(S) (X, Rq(1)2) is defined as 

VI(k5 f ) = (k(ti,1, tj, I))iq (-1) 

(used for Q,k in the definition of w, (k, f)). The information Nl EAXI (X, R'2) 
comes from Proposition 3 (and is used for v (k, f)). For j = 1, ... , M, and 
woj = (Xi/)?O i fixed above, with 1 < T(WJ) < 00, the information operator 
NC 0, E Xs4t(w*') (X, RT(w')) is defined as 

Nojjk5 
{ f (XI) if T(Wj) = 1,5 

N1(k ' f ) {((k(Xi Xi+,))>(j)-, f(X ( J))) if T((OJ) > 1 

Hence, 

Nc'M E XSt (X, R1f M, ) ) 

where P1(M, 1) - /2 + q(l)2 + Ej=Z T(WJ). In other words, for each o0M as 
above, there is a mapping (ptm E ID(Nw,M, R) such that UtWM = (p,m ? NtWM . In 
order to show that UW,M is a random variable, we have to verify that the map- 
ping w0M -- UWM is [(DN)M, 7(X, R)]-measurable. But this is easily derived 
from the structure of UW,M. Consequently, the distribution Pl,M of UW,M is a 
probability on [X(X, R), 5(X, R)], hence a Monte Carlo method. Moreover, 

M 

MC- card(PI,M) < En/(wM, 1) = 12 + q(l)2 + E ET(wj) 
j=1 

< ,2 +q(1)2 +M 1 

< Cii(12+ M), I?>lo, MeN. 

Using Proposition 1, we can see that E ((Xi) 00, w,(k, f)) = Sy,,(w1(k, f)) = 
ii (k, f ) and that the family (4(k f)) (k f )EX0 is Lipschitz in mean with constant 



THE MONTE CARLO COMPLEXITY OF FREDHOLM INTEGRAL EQUATIONS 273 

C5 . Inequalities (11) in Lemma 4 and (27) in Lemma 5 provide the estimate 

J ISuo(k, f ) - u(k, f )I dP1 M(U) 

=|Suo (k f ) 

{ f) + (( k, f) )-4(w', w1(k, f )))1 dP0M(WM) 

( ~ ~~ { 

- ii(k? f ) m k, f) )-a(w', wf(k, f} d 1/( 2 m) 

C d((k,ft), w1(k , f)) < ______ (k f) 

Sjuo(kf Sju , (k,f)kX 

We conclude 

emc(Sio,X,Pl M)<?C52iLr/m, l?lo, MeN. 

Setting M= -22, we conclude 

e2Cll2sA 1X) < C12l r/m 1 / > l0, 
from which the upper estimate in (3) follows. The proof of Theorem 1 is 

finished. Ow 

5. COMPLEXITY ANALYSIS 

Besides the order of approximation for a given class of Monte Carlo methods, 
as expressed by the quantity enmc (S, X), another function is of interest, the 
MC-complexity 

e cMC-comp(S,X,c), c>0, 

describing the average cost of arithmetic operations needed to approximate S,A 
with given Monte Carlo error <ce. We shall follow the outline in [20, p. 417]. 
Suppose w e egiven a function 

6: U{o(N, R), N eASt(X, Rn), n eN} -) R+ U{+oo} 

(the cost function for the algorithms). Let c* > 0 be a fixed constant, and 
define the cost of a deterministic method u E X(X, R) by 

cost(u) := inf{c*n+6(p), (oE4?(N,R), N E/kX,t(SR), n EN, u =(OoN}. 
Hence, we assumthe that e have to pay forlthnormation N (where each com- 
ponent of N is supposed to cost c*) and for the execution of the algorithm 
, both independent of (k, f) E X. It follows that cost(u) c* card(u)p . 
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We have to make one further assumption. Suppose we can produce a concrete 
"program" which uses the arithmetic operations +, -, *, / and which com- 
putes q E F(N, R). To be more precise, suppose q can be computed by 
a straight-line program as defined in [1, 11.2]. Then 0(fo) is assumed to be 
bounded from above by the number of steps executed by this program. For 
further details on models of computation and the respective cost functions, we 
refer to [ 1, 20]. To define the cost of a Monte Carlo method, it would be appro- 
priate to average over the cost of the deterministic methods involved. However, 
we cannot guarantee the [,(X, R), M(R)]-measurability. But since cost is 
positive, we can define the MC-cost of a Monte Carlo method P via an upper 
integral 

MC- cost(P) J cost(u) dP(u), 
X(X, R) 

as done for the MC-cardinality in ?2. The MC-complexity of the problem S,U 
on the class X of problem elements is defined by 

(31) MC-comp(S, , X, e) := inf{MC-cost(P), ernc(SI,, X, P) < c}. 

Remark. The given definition of MC-complexity of random methods does not 
express how hard it is to realize the random process necessary to find u E 
X#o(X, R). This may be justified if we think of a precomputational process, 
which provides realizations of all random variables needed to choose u. In 
particular, we assume that we can sample from any given distribution, e.g., gto, 
the initial distribution of Po (compare also the remark below). 

The above definition (31) of MC-comp(S, , X, e), together with the assump- 
tions made on cost, immediately imply 

MC-comp(SI,, X, e) > Cl3 inf{MC-card(P), emc(S,, X, P) < e} 

> C13 inf{n - 1, emc(S,, X) < e}, 

proving the lower bound in (4). 
To prove the upper estimate, we analyze the given algorithm described in 

?4. Therefore, we shall briefly outline a verbal description of the stochastic 
method defined by (30). While the approximative aspects of this method have 
been handled there, we shall see below that all steps can be executed within the 
number of operations as claimed in Corollary 1. 

First, we have to fix / E N and put M :12. Next, points (ti 1)'i') in 

JiM, a family (( 1)q(I) of continuous functions, and mappings PF, Q, from 
Proposition 2 have to be chosen. Also, M realizations wl, ...(, wM of the 
Markov chain (Xi)"1l can be precomputed, resulting in corresponding sample 
points. 

Now, given (k, f ) E X, the following steps have to be performed: 
1. Find v1(k, f ) according to Proposition 3 in all points (ti )'q'l) . To do 

this within the complexity bound, a multilevel method, as, e.g., proposed by 
Emelyanov and Ilin [6], is required. Thus, we are able to compute il (k, f) 
(Plvl(k, f), /to). 

2. Compute 4(wJ, k, f) and 4(wi, h, g), j = 1,..., M, where 4 is the 
standard Monte Carlo method defined in (13), and calculate the final approxi- 



THE MONTE CARLO COMPLEXITY OF FREDHOLM INTEGRAL EQUATIONS 275 

mation as 
M 

u(k, f) = a1(k, f) + M Z(4(w)j, k, f )-(wj, h, g)) 
j=1 

according to (30). The computation of (woj, k, f), j = 1, ..., M, requires 
the evaluation of k and f at the sample points. To compute 4(ij, h, g), j = 
1, ... , M, we have to evaluate h Qlk and g := Plvl(k, f ) - ThPlvl(k, f ) 
in all points corresponding to w), ... , wM. (Observe that PIv1(k, f ) is the 
exact solution of the Fredholm equation y(s) = f1m h(s, t)y(t) dt + g(s), s E 
Jm .) 

The considerations below will prove that both steps above can be carried 
out. Step 1 is the deterministic part of the algorithm, while Step 2 forms the 
stochastic part. 

To proceed, we shall count the required arithmetic operations. A look at Step 
1 shows that we have to compute fil(k, f). By (29) and (19) we have 

q(l) 

iu1(k, f) = (Plvl(k, f), io) = Zv(ti,I)( ,,P, IPo), 
i=l1 

where v stands for v (k, f). Since jt0 as well as the functions (i I are known 
beforehand, the scalar products ((p i, 1u0) can be precomputed. Moreover, it 
is known that there are C14 > 0 and v1 satisfying Proposition 3, for which the 
values v1(k, f )(ti, 1) (i = 1, ... , q(l)) can be computed in Cl412 arithmetic 
operations (see again [2, 6, 10]). 

We turn to the randomized part, Step 2. It requires the computation of M 
realizations of ((Xi)'IO1, k, f ) and ,((Xi)'Iw, w1(k, f)), respectively. Sup- 
pose we are given a realization (xi)ol1 of (Xi)l= with length T = r((xj)0=l ). 
The representation (13) shows that the calculation of c((xE)l=, k, f ) needs 
no more than 2T arithmetic operations. To evaluate 4((x1)?01, wl(k, f)), we 
need to know h = Q1k at T - 1 points and g = PIv1(k, f) - TQ,kPIvI(k, f) 
at another point. The representation (20) shows that the evaluation of Qlk at 
T - 1 points requires the values of o lI(s) and foj,I(t) at T - 1 points. Since 
any given point (s, t) meets only a constant number of supports (see [1 8]), 
we only have to carry out a constant number of evaluations of (i,I at s and 

/ at t. In concrete cases, the functions fi,1(s) and 0Pj, (t) are piecewise 
polynomials of fixed degree, the pieces and the supports being sets of simple 
structure (see [5]). So it is clear that the evaluation of (Oi,1(s) at one point is 
proportional to the degree, independent of 1. This implies that the number of 
arithmetic operations needed to know Qlk at T - 1 points requires arithmetic 
operations proportional to T - 1 . 

The amount of work needed to evaluate g at one point t can be derived 
from the representation (26) given above, 

q(l) q(l) 

g (t) v= E (ti, 1)f lp,I(t) - E k (til, 15tj, 1) Vl(tk, 1) i, I(t)((Pi-, 1 (Pk, 1) 
i=l i, j,k=l 

q(l) q(l) 

= , v(ti, 1) -1: k (ti ,5 tj )VI(tk, 1)(Pi-, 1 (Pk, ) P ( i,Pk I} 
i=l1t j,k=i 
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The terms in braces can be computed once for all t . Since f i l are known func- 
tions, we can think of ((pj I, (Ok, l) as being given real numbers. The condition 
(18) imposed on fljj shows that the sum over j, k = 1, ... , q(l), reduces to 
a sum over a number of summands proportional to q(l). Hence, the computa- 
tion of the terms in braces for i = 1, . .. , q(l) requires a number of arithmetic 
operations proportional to q(l)2. Once this is done, the computation of g at 
any given point t requires only a constant number of operations, since the sum 
over i = 1, ... , q(l) above reduces to one of constant length. Summarizing 
the arguments given before, and having the representation (30) in mind, we see 
that the computation of a realization of U)M (k, f ) with lengths TI, . .. , TM, 
respectively, requires a number of arithmetic operations bounded by a multiple 
of 12 + Z$= Ti + q(l)2 + M, which is proportional to 12 + Zl Ti . Since we 
assumed that the algorithmic cost 0 can be estimated in this way, we obtain 

MC-cost(PI,M) = Jcost(u) dPI, M(u) 

? C15 {I2+>E J ()) dPomv(wM)} 

C15{12+MEr} < C6(12+M). 

The choice of M = 12, made to prove the upper estimate in (1), finally yields 

MC-comp(S,0, X, e) < Ci7.(1/e)2m/(r+m), e> 0, 

proving Corollary 1. 

Remark. Although the model of computation for Monte Carlo methods, intro- 
duced above, does not deal with the problem of realizing the random variables 
needed in the computational process, some hints seem to be useful. A different, 
but from the point of view of numerical simulation more convenient way to 
introduce (Xj)l1= is as follows. 

Let (Zi)'II be a sequence of independent random variables, each with uni- 
form distribution on [0, 1]. Let z be the random natural number, defined as 
z = min{i, Zi > p}, i.e., 

P( = n) =pn- '(1_p)5 n >1 

Further, let (Yi)i??2 be independent identically distributed with Py, = 2, where 
2 is the Lebesgue measure on Im. Putting Xl = X1 distributed according to 
1o1, and for i > 2 

Y if i < ? 
i l A if i > , 

we can easily check that P(x/)D = P(x,)oo, thus providing the possibility of using 
a pseudo-random number generator for uniform distributions, readily available 
on most computers. 

It seems worthwhile to make some remarks on the deterministic case of the 
problem under consideration. Define the error of a deterministic method u E 

,(X, R) by 

e(S, ,X,u):=sup{jS,,(k,f)-u(k,f)1, (k,f)EzX} 
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and put 
en(SA,, X) := inffe(S,,, X, u), z Ef X(X , R)} . 

Then 

(32) cn r/(2m) < sup en X) Cn-r/(2m) 
L11< 1 

This was proved by Emelyanov and Ilin [6]. To draw the final conclusion, we 
see that for the optimal Monte Carlo method, both rates multiply-the standard 
Monte Carlo rate for general continuous data, n-112, and the deterministic rate 
for r-smooth data, n-r/(2m) . Statements analogous to (32), and the conclusions 
above, hold also for the complexity. 
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